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A method for computing phase diagrams of polydisperse A/B polymer blends is proposed, based on
Flory–Huggins–Staverman thermodynamics, and employed to obtain cloud-point curves (CPCs),
shadow curves, spinodals and coexistence curves for a series of systems. Often bimodal CPCs and
shadow curves result, even for systems with a concentration-independent interaction parameter g. The
importance of coexistence curves, as opposed to CPCs, for judging the A/B miscibility, recently ob-
served in polydisperse blends, is confirmed in this study. Particular attention is here paid to the criti-
cal state. Analytical relations are derived for the critical point (CP) and the critical slopes of the CPC
and shadow curve, as well as for the criterion of CP stability, all in terms of various molar-mass
averages of A and B. The latter criterion then yields conditions for the existence of heterogeneous
double CPs and triple CPs, important as markers announcing the proximity of a three-phase region.
Interestingly, the sign of the critical CPC slope depends solely on the relative magnitude of the rz/rw

ratios for the two polymers A and B. Hence, a CP located at the CPC’s top should not be interpreted
as a proof of both polymers’ monodispersity. The validity of derived analytical relations is confirmed
by numerically computed phase diagrams.

Polymers usually possess a rather broad distribution of molar mass unless special
methods are used and great care is taken during their preparation. Yet, the effect of
polymer polydispersity on the phase behavior of polymeric systems has been thor-
oughly examined only for the simplest case, i.e., for solutions of polydisperse homo-
polymers. Years ago, a numerical computation of phase equilibria in bulk polydisperse
polymer mixtures has been reported briefly1, however, the cloud-point curves (CPCs)
had to be obtained by extrapolation of results from several computer runs with various
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non-zero phase-volume ratios. Such a procedure is lengthy, inherently inaccurate, and
may obscure some important details of phase diagrams.

A fast direct method for CPC computation in solutions of polydisperse polymers was
developed in early seventies2. Its adaptation for polydisperse polymer blends, com-
plemented by a series of formulas for the critical state, is presented here; it also pro-
vided the basis for a program in the Phase Diagram module, part of the Polymer
Software marketed by BIOSYM Technologies, Inc.3. Other direct methods for blends
were reported recently4.

In one respect this case is still simple: the system contains only two constituents
whose interaction can be described by a single interaction parameter g. However, both
of these constituents are now polydisperse, and it is not immediately obvious how to
handle the situation which, e.g., gave rise to confusion on some very fundamental questions,
such as, whether the critical points here can be stable at all.

In our past work on systems solvent–polydisperse polymer, the most effective ap-
proach was to base the analysis on the separation factor σ introduced for polymer solu-
tions by Flory5. An analogous method turns out to be beneficial for bulk quasibinary
systems as well, although two σ parameters are here required to describe the behavior1.
The results should allow for a more realistic modeling as well as interpretation of ex-
perimental data on polymer–polymer compatibility, typically obtained with polydis-
perse polymer samples. In addition, this exercise provides the background for analysis
of more complex cases such as quasiternary solutions6 and statistical-copolymer sys-
tems7.

In the next two sections equations for the cloud-point and coexistence curves are
derived from the general condition for phase equilibrium in systems obeying the Flory–
Huggins–Staverman (FHS) thermodynamics1,5. In Section 3 various relations for the
critical state are obtained, that are then applied to multiple critical point analysis in
Section 4. Finally, Section 5 contains numerically computed phase diagrams for some
polydisperse blends, partly confirming the derived relations, partly illustrating some
phenomena of general interest.

1. THERMODYNAMIC BACKGROUND

A general expression for ∆Gm, the Gibbs energy of mixing ΣnAi and ΣnBj moles of
polymers A and B, respectively, in bulk may be written as1,5

∆Gm/RgT = ∑ 
i

nAi ln ϕAi + ∑ 
j

nBj ln ϕBj + Γ  , (1a)

where RgT has its usual meaning, n denotes the amount (in mol) and ϕ the volume
fraction, with the letter subscripts A, B referring to the two polymeric constituents, and
the running subscripts i, j, if present, specifying each constituent’s fractions (i.e., their
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components). For instance, ϕAi is the volume fraction of the i-th component of polymer A,
and the total volume fraction of A is ϕA = ΣϕAi. The normalized molar mass distribu-
tion (MMD) of A is then defined by wAi ≡ ϕAi/ϕA, the mass fraction of component i in
pure constituent A. The system is thought to be built up of N basic volume units (BVU)
where N = Σ nAirAi + ΣnBjrBj; here the relative chain length rKl is defined as the number
of BVU’s occupied by a chain l of polymer K, and the volume fraction of such chains
in the blend is ϕKl = nKlrKl/N.

Molecular models have been developed that differ by the specific form of the inter-
action function Γ in Eq. (1a). For instance, in the original FHS treatment Γ was assumed to
be given by the Van Laar expression

ΓFHS = gϕB ∑ 
i

nAi rAi  , (1b)

where the interaction parameter, g, depends solely on temperature, T. Other models
make g concentration dependent, and are subject of current research.

The equilibrium condition of equal chemical potentials ∆ µKl in the two phases (′)
and (″) for the l-th component of polymer K leads to the relation

∆(∆µKl)/(rKl RgT) = rKl
−1∆(ln ϕKl) − ∆U + ∆[(g + ϕKgK)ϕL

2] = 0  , (2)

where K, L = A, B, K ≠ L; gK ≡ (∂g/∂ϕK)T,ϕL
, ∆ stands for the difference between the

two phases (e.g., ∆ϕK = ϕK′′  – ϕK′), and  U is the overall reciprocal number-average
chain length,

U ≡ ∑ 
i

(ϕAi /rAi) + ∑ 
j

(ϕBj /rBj) = (ϕA/rA,n) + (ϕB/rB,n)  , (3)

with rK,n being the number-average chain length of the constituent K. From Eq. (2) it is
obvious that the concept of Flory’s separation factor, σ, originally introduced for solu-
tions of polydisperse polymers5, can be utilized for polymer blends as well if a separate
σ is defined for each polymeric constituent1,6–8,

σK ≡ rKl
−1 ∆ (ln ϕKl) = ∆U − ∆[(g + ϕKgK)ϕL

2]  . (4a)

Further discussion will be limited to the simplest case where g of Eq. (1b) is inde-
pendent of concentration, i.e., gK = 0.
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Following the method well proven for ternary systems8, we define (i) a symmetrical
cloud-point function F independent of g, i.e., independent of temperature, and (ii) a
difference function G compactly expressing the effect of interactions g between the two
polymers.

The function F is obtained by multiplying the simplified version of Eq. (4a) for each
constitutent by its (ϕK′  + ϕK′′ ), and summing over K,

F ≡ σA(ϕA
′  + ϕA

′′ ) + σB(ϕB
′  + ϕB

′′ ) − 2∆U = 0  , (5)

while G is formed by subtracting the zeroed Eqs (4a) written for A and B,

G ≡ σB − σA + g(∆ϕA − ∆ϕB) = 0  . (6a)

The latter relation can be further rearranged: since there is no solvent present in the
polymer blend, we have by definition

ϕA + ϕB = ϕA
′  + ϕB

′  = ϕA
′′  + ϕB

′′  = 1  ,          i.e.,       ∆ϕA + ∆ϕB = 0  , (7a, 7b)

and Eq. (6a) can be recast as

σB − σA = 2g ∆ϕB  . (6b)

The parameter g is thus proportional to the difference between the two separation fac-
tors and inversely proportional to the concentration difference ∆ϕB between the two
phases. It may be noted that the functions F and G of Eqs (5) and (6a) are the bulk
polydisperse equivalents of the functions F and G introduced earlier for ternary solutions
(cf. Eqs (4) and (5) of ref.8). There is no equivalent to the ternary function H since the
solvent is absent from our system.

It is apparent that the two factors σA and σB are not independent; they have to be
compatible with relations (7). On a qualitative level, they have to be of opposite signs,
σAσB ≤ 0, since enrichment of a phase by one polymer inevitably means impoverish-
ment in terms of the other. The detailed form of this condition will be discussed later.
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2. CLOUD-POINT AND COEXISTENCE CURVES

In thermodynamics of quasibinary polymer solutions the most common type of phase
diagram contains the cloud-point curve (sometimes with its conjugate counterpart
shadow curve) specifying the dependence of the cloud point temperature on polymer
concentration. It can be obtained relatively easily, both experimentally and theoreti-
cally, and it is convenient for characterization of the dissolved polymer sample. Only
rarely would one also see plotted so-called coexistence curves, tracing for one solution
of a particular composition the changes in concentrations of coexisting phases with
changing temperature9–11. On the other hand, for bulk polymer blends the interest may
well be shifted towards the latter curves since, from the point of view of blend perfor-
mance, one often desires to know the phase behavior of a particular polymer mixture
over a range of temperatures that could affect its ultimate properties4. In the following
paragraphs, both subjects are briefly recalled.

The computation of the CPC is fairly simple: Since the amount of the separated
incipient phase here approaches zero, the composition of the unindexed principal phase
is known, being identical to that of the original mixture before phase demixing. With
changed notation [(′′ ) → (*) for the incipient phase, and (′) → ( ) for the principal
phase], Eq. (4a) yields2,8

ϕKi
∗  = ϕK wKi exp (σKrKi) (4b)

and the remaining needed function B* can be defined from Eqs (7) as

B∗  ≡ ϕA
∗  + ϕB

∗  − 1 = ϕAWA
∗ (σA) + ϕBWB

∗ (σB) − 1 = 0  , (8a)

where, for the known MMD’s of A and B, the quantity WK
∗ (σK) ≡ ΣwKi exp (σKrKi) is a

function of only σK.
Since the CPC in T vs ϕB coordinates has one degree of freedom, one can select the

value for one of the relevant variables (T, ϕB, σA, σB) as the CPC’s parameter. A good
option seems to be one of the separation factors, say σB, whose value is a measure of the
distance of the cloud point from the critical point (CP); note that at the CP, σA = σB = 0. The
computation can be accomplished in a single iteration cycle: e.g., for a σB > 0, a nega-
tive trial value of the other factor, σA, is chosen, ϕB is computed from Eq. (8a) as

ϕB = [1 − WA
∗ (σA)]/[WB

∗ (σB) − WA
∗ (σA)] (9)
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and with the incipient-phase concentrations ϕKi
∗  expressed from Eq. (4b), the F of Eq. (5) is

evaluated. The correct value of σA, zeroing the function F is found by trial and error.
The parameter g (or T) is calculated in the end from Eq. (6b). It is apparent that σB > 0
will generate only a part of the CPC; the rest of it requires setting σB < 0. On the whole,
the computation of the CPC for a bulk quasibinary polymer mixture is no more difficult
than that for a polydisperse homopolymer dissolved in a solvent.

Somewhat more involved is the computation of coexistence curves displaying the
fate of a particular mixture of polymers A and B, as it is taken by varying its tempera-
ture through the cloud point and deeper into the two-phase region. Then of course
neither one of the two coexisting-phase compositions is known; they are, however,
related by the volume-conservation Eq. (10). The additional parameter varying with the
extent of penetration into the two-phase region is the phase-volume ratio, R ≡ V"/V′,
where V′  and V" are the volumes of the respective phases. Assuming volume additivity
upon demixing, each component’s concentrations have to comply with the relation

ϕKi
′  + RϕKi

′′  = (R + 1)ϕKi (10)

that, combined with Eq. (4a), permits calculation of each phase’s composition in terms
of σK and R; e.g.,

ϕK
′  = ϕK(R + 1) ∑ 

wKi

1 + R exp(σKrKi)
  . (11)

A convenient form of the testing function B is then, e.g., the relation (7a) written for
the phase (′)

B′ ≡ ϕA ∑ 
wAi

1 + R exp (σArAi)
 + ϕB ∑ 

wBj

1 + R exp (σBrBj)
 − 

1
1 + R

 = 0  . (8b)

The computation procedure now differs from that used for CPCs. Since the desired
result is the coexistence curve for a blend of a particular composition, ϕA and ϕB of Eq. (8b)
have to be kept constant, and the selected value of another parameter will determine the
position of the computed point on the coexistence curve. Unlike in the CPC calculation,
in this case there seems to be no way of avoiding double iteration. For instance, one
may select a value for R, and search by trial and error for values of σA and σB that
would satisfy B′  of Eq. (8b) and F of Eq. (5). As before, the parameter g is determined
last from Eq. (6b) after the iteration of σA and σB has been completed. A similar scheme
was used for an α/β statistical copolymer system characterized by a two-dimensional
distribution of chain length and composition7.
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The cloud point can also be obtained as a special point of the coexistence curve1. Our
version of B, B′ of Eq. (8b), premultiplied by R, is suitable only for mimicking the limit
for R → ∞ that produces the “supercritical” portion of the CPC. It is apparent that for
the “subcritical” part requiring the limit for R → 0, the condition (8b) becomes trivially
satisfied and thus useless. Here an alternative criterion B″ formulated for the phase (′′ )
would be required for computation. While the direct CPC calculation via B* of Eq. (8a)
is much simpler and more accurate, the limit approach described here and in ref.1 offers
a good consistency test for the two programs.

For some tasks a preferred alternative to variables σK is their transformed version η
and ξ, originally introduced for ternary solutions8,

σA = ± (η2/ξ2)1/2  ,           σB = +− (η2ξ2)1/2 (12a)

or

ξ2 = σB/σA  ,                    η2 = σAσB  . (12b)

Since for polymer blends σA and σB have to be of opposite signs, both η2 and ξ2 are here
negative. Advantages of working with ξ and η are:

a) There is just one variable, η2, acting as a measure of the distance from the CP, and
approaching zero at the CP. Hence, taking the limit of  various functions at the CP is
simpler.

b) The second variable, ξ2, on the other hand, typically stays non-zero even at the
CP, and changes very little along the CPC (certainly much less than σA, σB or η2 do);
hence its correct final value from one iteration provides a good starting point of itera-
tion for the neighboring point.

c) ξ2 characterizes for a given chain length the relative fractionation efficiency for
polymer B over that for A, with | ξ2| > 1 indicating a sharper separation for B than for
A. Also, its critical value affects the critical binodal direction in the multidimensional
composition space (see below).

3. CRITICAL STATE

Since F converges to zero as η3, we work with its reduced form* F
__

 ≡ 6F/η3. Its
expansion into an η power series, reported for strictly ternary systems as Eq. (16) of
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ref.12, turns out to be equally applicable for polydisperse blends if the second negative
solvent-related term is omitted and the moments are properly redefined. The expanded
form becomes

F
__

 = 6 ∑ 
k = 0

∞
k + 1

(k + 3)!{rk+2ξk+3}ηk  , (13)

where the over-all statistical moments {} are now taken over all components of the two
polymeric constituents,

{rmξn} ≡ ϕAξ−n ∑ 
i

wAi rAi
m  + ϕBξn ∑ 

j

wBj rBj
m   . (13a)

Alternatively, the over-all moments {} can be transcribed as averages 〈〉  over two
constituents,

{rm ξn} ≡ 〈µmξn〉 = ϕAξ−nµA,m + ϕBξnµB,m (13b)

in terms of the regular statistical moments, µK,m , of each constituent’s chain-length
distribution, where

µK,m = ∑ 
i

wKi rKi
m   ,     K = A,B  . (13c)

Consistently with Eq. (20) of ref.12 for ternary systems, the G function of Eq. (6a) is
expanded as

G
__

 ≡ G ξ/η = ξ2 − 1 + ξg ∑ 
m=1

∞
ηm−1

m!
  ϕAξ−mµA,m − ϕBξmµB,m

   , (14)

whereas the condition (8a) yields
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B
__

 ≡ B∗ /η = ∑ 
m=1

∞
ηm−1

m!
  ϕAξ−mµA,m + ϕBξmµB,m

   . (15)

Two critical functions are now obtained as limits for η2 → 0 of the expanded equili-
brium functions (13) and (14)

F ≡ lim
η→0

 F
__

 = {r2ξc
3} = 〈  rzrwξc

3 〉 = 0  , (16a)

G ≡ lim
η→0

 G
__

 = ξc
2 − 1 + gc(ϕA,crA,w − ξc

2ϕB,crB,w) = 0  , (16b)

where the subscript c denotes the critical values of the variables, and the statistical
moments over the chain-length distribution of each constituent have been replaced by
more familiar weight- and z-averages, using the identities µK,1 ≡ rK,w and µK,2 ≡ rK,wrK,z.
The third critical relation comes from the condition (15):

B ≡ lim
η→0

 B
__

 = 〈  rwξc 〉 = 0  . (16c)

For ensuing discussion it is convenient to abbreviate the ratios of two consecutive
chain-length averages for the same constituent K as a subscripted ζK ≥ 1. For instance,
ζA,z+1 ≡ rA,z+1/rA,z, or, in general,

ζK,t+1 ≡ rK,t+1/rK,t  . (17a)

Equations (16a) and (16c) can be solved for the critical values of the parameter ξ2

and the concentration ϕB,

ξc
2 = −ρA,z/ρB,z  , (18a)

ϕB,c = ρA,q / (ρA,q + ρB,q)  , (18b)

where the square-root chain-length averages ρK are defined as
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ρK,z ≡ (rK,z)1/2  ,       ρK,q ≡ rK,w /(rK,z)1/2 ≡ ρK,z / ζK,z  . (18c)

Finally, substituted into Eq. (16b), these relations yield the critical value of the inter-
action parameter as

 gc = 
(ρA,z + ρB,z) (ρA,q + ρB,q)

2rA,wrB,w
  . (18d)

The relations for ϕB,c and gc, Eqs (18b) and (18d), are equivalent to the results by
Koningsveld et al. obtained earlier1,13 with the aid of the Gibbs method of spinodal and
critical determinants. If one of the constituents is a solvent, the relations reduce to the
results obtained years ago by Stockmayer14.

The critical slope of the CPC is obtained from the differential of G function (see
Appendix 1) as





2 
dg

dϕB



 c

 =  ρA,q
−1  + ρB,q

−1 


2

 ζA,z

−1  − ζB,z
−1 

   . (18e)

Thus, it can be either positive or negative, depending on whether the ratio rz/rw ≡ ζz is
smaller or greater for the polymer A, relative to that of B. Note that if the ratios rz/rw

for both A and B are the same, critical slope will be zero, behaving as if the two
constituents were monodisperse. Hence, in polymer blends the location of their CP at
the maximum (or minimum) of their CPC must not be interpreted as an indication of
their monodispersity. Furthermore, if A is indeed monodisperse and B is not, the slope
(dg/dϕB)c has to be positive; say, for an UCST system, this condition then places the CP
on the right descending branch of the CPC in T vs ϕB coordinates, a pattern well known
from the past. For this case the symmetric relation (18e) reduces to the result derived
earlier (Eq. (11) of ref.2).

The critical slope of the shadow curve is tied to that of the CPC, Eq. (18e), by the
trivial relation




 

dg
dϕB

∗


 c

 = 




 
dg

dϕB



 c

 × 




 
dϕB

dϕB
∗



 c

  , (18f)

where, from Eq. (4b), the latter derivative can be expressed as





 
dϕB

dϕB
∗



 c

 = 






1 + ϕB,crB,w





 
dσB

dϕB





c








−1

  . (18g)
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The rate of change of σB with the CPC concentration ϕB is derived and substituted into
Eqs (18f), (18g) in the Section 4.1.

Expansion of Eq. (4b) at the CP yields the critical binodal direction, i.e., the common
slope of the binodal and spinodal at the CP in the isothermal multidimensional compo-
sition space,




 
dϕKi

dϕKj



 c

 = 
ϕKi,c rKi

ϕKj,c rKj
  ,      K = A, B  , (18h)




 
dϕBi

dϕAj



 c

 = − 
ρA,z

ρB,z
 
ϕBi,c rBi

ϕAj,c rAj
  .

As before in the case of ternary systems8, it is somewhat surprising to see that for given
chain-length distributions of A and B, the critical binodal direction is firmly fixed by
the position alone of the CP in the composition space, and explicitly independent of
interactions. Not so unexpected is the qualitative behavior indicated by the signs of the
right-hand sides of Eqs (18h): a displacement along the critical binodal direction makes
the concentrations of all components of, say, A vary in the same way (either all de-
crease or all increase), while those of B vary in the opposite direction.

4. MULTIPLE CRITICAL POINTS, STABILITY, AND THREE-PHASE REGIONS

Analogously to the case of solutions of polydisperse polymers15–19, in polymer blends,
too, the multiple CPs mark boundaries of “stability” for CPs and announce the
proximity of a multi-phase region in the complete composition–temperature space.
Since it is desirable to know the conditions under which such behavior can occur, the
criteria for heterogeneous double CPs (HEDCPs) and triple CPs are derived below, and
the implications for stability of CPs are discussed.

In all these considerations, various ratios of two consecutive averages for each
polymer constituent turn out to play an important role. For the simplest case of polydis-
perse constituent, namely, a binary mixture of two polymer components P1 and P2 with
chain lengths r1, r2 and weight fractions w1 and w2 ≡ 1 – w1, the following facts may aid
in choosing the parameters:

A) The ratio Zl(w2) ≡ rz+l /rz+l–1 = ζz+l as function of w2 reaches a maximum,

Zl,max = (κ1/2 + κ−1/2)2/4  , (17b)

whose value depends only on the chain length ratio of the two components, κ ≡ r2/r1,
but not on their absolute values or on the particular type of the ratio specified by the
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subscript l. With increasing κ, all maximal ratios grow. Conversely, the chain-length
ratio κ  required for a desired maximum Zmax is

κ∗  = 2Zmax − 1 + 2[Zmax(Zmax − 1)]1/2  . (17c)

B) The weight fraction for the maximal Zl, on the other hand, does depend on the
index l (and on κ again), becoming smaller with growing l and κ,

w2,max = (1 + κl+1)−1  . (17d)

The results are applicable even for negative l; e.g., the ratio rw/rn with l = –1 always
peaks at w2,max = 1/2.

C) Obviously, κ* also represents the minimal chain-length ratio for which a desired
ratio of consecutive averages is attainable at all. In that sense, w2,max of Eq. (17d) is a
double root which splits into two single ones for chain-length ratios κ > κ*. For in-
stance, for a system with r1 = 10, the maximal ratio Z1,max ≡ rz+1/rz = 2 appears the first
time for κ ≈ 5.8284, i.e., for r2 ≈ 58.284, at w2,max ≈ 0.02860, in accord with the above
equations. But when r2 is increased to 60, i.e., by a mere 3%, the same ratio Z1 = 2 now
shows at two quite remote compositions, w2 ≈ 0.0182 and w2 ≈ 0.0400.

4.1. Heterogeneous Double Critical Points

A model phase diagram for a polymer blend with a three-phase region is displayed in
Fig. 1. The system is a quaternary mixture, where each of the two constituents, A and B,
consists of two species 1 and 2 with various chain lengths. While it is the simplest type
possible, it already suffices to illustrate the essentials of phase relations in polydisperse
blends.

The most striking feature is the bimodal character of the CPC (1), with an abrupt
“break” at the three-phase point T in the “valley” where two of its stable branches
intersect. Here the principal phase of concentration ϕT can be at equilibrium with either
one of the incipient phases T* and T** located on the shadow curve (2). The metastable
portions of the CPC extending from T downwards become unstable at the points of
intersection with the spinodal (3) and, in general, continue towards the cusps C1 and
C2, respectively, where they merge each with one end of the bottom unstable branch of
the CPC. In the particular case depicted in Fig. 1, the system possesses a heterogeneous
double critical point (HEDCP) overlapping with the cusp C2, hence the entire CPC
section T-C2 is metastable. While most obvious, the point T represents just one of a full
spectrum of three-phase equilibria existing at various temperatures. For the chosen
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polymers A and B, however, it is unique in being simultaneously a cloud-point at
equilibrium with two different incipient phases; the rest of the three-phase region is
buried under the stable CPC envelope, representing cases where the second and third
phases are well developed.

The cusps C1 and C2 are singular, mathematically ill-behaved points where, drawn
in g vs ϕ (or T vs ϕ) coordinates, the CPC “stops”, “turns around” and continues with
the same slope backwards in the opposite direction, while the parameters σK, ξ2 and η2

typically keep changing smoothly and monotonously. As a result, the derivatives of

0.40           0.44             0.48             0.52             0.56             0.60ϕB

–0.1400

–0.1416

–0.1432

T*

b 1

3

2

T**T

CP

C2

C1

–g

FIG. 1
Phase diagram for a three-phase quaternary system with rA1 = rB1 = 10, rA2 = 150, rB2 = 300, wA2 =
4.65114 . 10–2, and wB2 = 7.85172 . 10–3. Curves: 1 cloud-point curve (CPC), 2 shadow curve, 3
spinodal. Only stable portions of 1 and 2 are drawn by lines. The full-scale diagram from a is de-
tailed in b: The CPC shows a three-phase point T and two cusps, C1 and C2, the latter one overlap-
ping with the critical point CP; ▲−−▲−−▲ three-phase cloud-point equilibrium
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some σ-based quantities along the CPC (e.g., dσK/dϕB, dη/dT, etc.) here diverge. At the
first sight, the classical rule about a cusp phase being conjugated with a spinodal point
of the incipient phase, previously confirmed for binodals in ternary diagrams15 and for
CPCs in polydisperse polymer solutions20, here seems to be broken: The shadow curve
(2) minimum at ϕC1

∗  ≈ 0.448, at equilibrium with the cusp C1, is clearly not intersected
by the spinodal (3). This seeming discrepancy, however, is only one of many en-
countered in quasibinary CPC diagrams due to distortions in projecting spatial relations
into the CPC plane. The spinodal drawn in Fig. 1 is entirely contained within the CPC
plane, hence it is irrelevant for the position of the spinodal surface near the out-of-plane
shadow-curve minimum. In fact, a simple calculation shows that at this minimum, the
spinodal condition is met. A general proof that in polydisperse blends the incipient
phase, coexisting with a cusp, belongs to the spinodal hypersurface is given in Appen-
dix 2.

It is well known that in polydisperse polymer solutions, the CP can be located on any
of the three CPC branches. For instance in a ternary system with rA1 = rB1 = 1, rB2 = 25,
with the content wB2 of the high-molecular weight component B2 growing, say, from
1 . 10–5 to 0.05, the CP moves from the high-ϕB stable CPC branch via the cusp of C1
type, the unstable branch T-C2 and the other C2-type cusp, all the way to the low-ϕB

stable branch2,16. A similar behavior is expected in the present case as the MMD’s of
polydisperse A and B are appropriately varied. Easily identifiable in this process is the
moment when the CP passes through one of the cusps; here the CP becomes a heteroge-
neous double CP (HEDCP)15,21 representing the overlap of two single CP’s: one of the
first kind, and the other of the second kind (cf. Korteweg21), or, in looser terms, of
(meta)stable and unstable type, respectively. Thus the criterion for the appearance of an
HEDCP is given by critical relations, Eqs (18a)–(18d), combined with the cusp condition




lim
η→0

dϕB

dη


 CPC

 = 0  , (19a)

where the total derivative is taken along the CPC. A more useful form of this criterion
in terms of partial derivatives of F function is derived in Appendix 1: from Eq. (A1.3)
it is

lim
η→0

 



F
__

η + F
__

ξ
dξ
dη




 = 0  , (19b)

where the subscripts denote the partial derivatives [e.g., Fη ≡ (∂F/∂η)ϕ,ξ]. The partial
derivatives of F needed for Eq. (19b) are trivial, and the total derivative dξ/dη along
the CPC is evaluated with the aid of B function (see Appendix 1). The final result for
the HEDCP criterion is S = 0, where
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S ≡ ρA,z(3rB,z − rB,z+1) + ρB,z(3rA,z − rA,z+1) (20a)

or, after dividing the equation by ρA,z ρB,z, even more simply S′  = 0, where

S′  ≡ S/(ρA,zρB,z) ≡ ρB,z(3 − ζB,z+1) + ρA,z(3 − ζA,z+1)  . (20b)

These symmetrical forms of S are far more appealing than the earlier (albeit consistent)
version

S ≡ 3rz + 2ρz − rz+1 (20c)

derived for solutions of polydisperse polymers (i.e., for rA = 1)2,16,18. If the criterial
function S is negative, S < 0 , the critical point is of the second kind in Korteweg’s
sense21, i.e., the CPC in its neighborhood is thermodynamically unstable. (For the sake
of brevity, the same stability qualifier is often employed for the CP itself, although,
strictly speaking, one should use the Korteweg’s term, or, relate the instability to the
CPC.) A positive S, on the other hand, guarantees the CP’s (meta)stability.

Interestingly, the slope of the CPC (Eq. (18e)) stays well defined, as demanded by
the physics, even at an HEDCP where some other concentration derivatives diverge; as
shown in Appendix 1, this is due to convenient cancellation of the two diverging terms
containing dη/dϕB and dξ/dϕB. Also evaluated can now be the derivative (dσB/dϕB)c

required for the critical slope of the shadow curve, Eqs (18f, 18g). From the definition
of σB, Eq. (12a), it is apparent that this derivative is proportional to (dη/dϕB)c discussed
in Appendices 1 and 2. Thus, Eqs (18f, 18g) ultimately yield for the shadow curve





2  
dg

dϕB
∗


 c

 = [(ζA,z)−1 − (ζB,z)−1] 
S/(ϕBρA,qρB,q)

ϕAS − 4ρA,zrB,w
  , (18i)

where S is defined by Eq. (20a). From here it is apparent that the shadow curve may
show an extremum at the critical concentration for two reasons:

1. If the bracket of Eq. (18i) is zero, i.e., if the rw/rz ratio is the same for both
polymers; in this case, also the CPC shows an extremum (cf. Eq. (18e)), and its com-
mon point with the shadow curve is a classical critical point.

2. If the stability criterion S for the principal phase is zero; that happens for a critical
point located on the cusp of the CPC (cf. Fig. 1b).
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In other cases, the critical slope of the shadow curve is nonzero. Sometimes it may
even diverge, with the shadow curve at the CP becoming vertical; this happens if the
denominator of Eq. (18i) equals zero, i.e., if

ϕAS = 4ρA,zrB,w (18j)

or, with the aid of Eqs (18b) and (20a), if

ρA,z(3 − ζA,z+1) + ρB,z(3 − ζB,z+1) = 4(ρA,q + ρB,q)  . (18k)

It is immediately obvious from Eq. (18j) that the shadow curve cannot ever become
vertical in the neighborhood of an unstable CP where S < 0; the CP has to be stable or
metastable.

4.2. Stability

Two consequences of Eq. (20b) are immediately obvious: (i) If the ratios ζA,z+1 and
ζB,z+1 for the two polymers A and B are low (specifically less than 3), the CP is stable
or metastable. (ii) If both ratios are high (greater than 3), the CP is unstable.

The interesting case occurs if one ratio is low and the other is high, say, ζA,z+1 < 3,
ζB,z+1 > 3; here the outcome may go either way. From Eq. (20b), the critical instability
condition S < 0 then reads

ρB,z

ρA,z
 
ζB,z+1 − 3

3 − ζA,z+1
 > 1  . (21a)

Thus, a B-polymer ratio ζB,z+1 > ζ*, where

ζ∗  ≡ 3 + 2(ρA,z/ρB,z)  , (21b)

guarantees the CP’s instability regardless of ζA,z+1, the ratio for the other polymer A
(which obviously cannot be lower than 1, the value for a monodisperse A). The numeri-
cal value of ζ* grows with decreasing chain length rB,z from the minimum of 3 (for a
very high-molecular weight B, ρB,z → ∞) to a hypothetical maximal value of 3 + 2ρA,z

(corresponding to a somewhat unphysical situation of a monomeric B, rB,z = 1, with its
ratio ζB,z+1 > 3). These results are consistent with previous findings for ternary solutions2,15,16
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(with ρA = 1) where the instability condition calls for the ratio rB2/rB1 > 15.645 if rB1 = 1,
or >9.899 if rB1 → ∞.

The above considerations clearly show that instability of CPs in quasibinary polymer
blends is far from being a common phenomenon; just like in the case of solutions of
polydisperse polymers, a high ratio ζB,z+1 for at least one polymer is necessary. In fact,
if anything, the tendency towards instability at constant ζA,z+1 and ρB,z decreases as the
“solvent” A becomes polymeric, since higher ratios ζB,z+1 are required for it (cf. Eq. (21a)).

Equation (21a) also indicates that the ζK,z+1 ratios of both polymers show synergism
in achieving instability: For instance, at constant rA,z and rB,z, the demand for high ratio
ζB,z+1 of the B distribution is alleviated by an increase in the ratio ζA,z+1 of the A dis-
tribution.

Perhaps it should be pointed out that in developing the present picture of phase be-
havior, the illustrations in papers of one of us (K. S.) were not always accurate:

a) The ranges of the cloud-point curve stability schematically shown in Fig. 1 of
refs22,23 from early seventies are not general. A CPC cusp acts as a separator of unstable
and metastable portions of the CPC only if it is also occupied by a CP, i.e., if the
system happens to possess an HEDCP. In general, however, cusps will stay unstable,
and the boundary between unstable and metastable portions of the CPC is shifted to-
wards the three-phase point T. The boundary can be located by using the spinodal
condition1 as the stability criterion for off-critical phases.

b) The pointed extrema of the shadow curve drawn in Fig. 1 of ref.22 are only sche-
matic; as shown later20, the extrema should be perfectly normal, of round shape and
zero slope. Since they represent projections of incipient phases conjugated with the
CPC’s cusps, however, they have to belong to the spinodal hypersurface15,20 (although
they may not be located on the spinodal often drawn for the CPC’s composition plane
(cf. Fig. 1b)). Thus, noncritical extrema do act as separators of unstable and
(meta)stable portions of the shadow curve, even in polydisperse blends. The uneasiness
intuitively felt due to possibly having, e.g., an unstable point of the CPC at equilibrium
with a (meta)stable incipient phase of the shadow curve is uncalled for. Such a combi-
nation is feasible since the equilibrium merely requires equality of chemical potentials
at two distant phase compositions, whereas the phase stability is the matter of the local
rate of change of chemical potentials with composition (that may well be opposite at
two distant points sharing the same chemical potentials). In fact, such cases of a meta-
stable phase equilibrated with an unstable phase may occur even in binary systems
when the interaction function is concentration dependent (see, e.g., Fig. 9a of ref.24).

c) Also, the point of intersection of the two stable CPC branches was at first referred
to as the “triple” point2. On second thought, it was realized that this was not a suitable
term, particularly because of possible confusion with an entirely different “triple critical”
point. Hence, a more appropriate term “three-phase” point was later introduced (cf. a
note on p. 1952, ref.16).
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4.3. Triple Critical Points

In ternary systems the role of HEDCPs and triple CPs is very unique. For instance, in
the particular system mentioned in Section 4.1. (rA1 = 1; rB1 = 1, rB2 = 25), the two
HEDCPs occupy a local maximum (at wB2 ≈ 4.2 . 10–4) and minimum (at wB2 ≈ 9.4 . 10–3)
of the critical line, and are embedded in the three-phase region. With decreasing chain
length rB2, both the interval between the two HEDCPs and the size of the three-phase
region shrink, until they disappear entirely in a triple CP at wB2 ≈ 4.95 10–3 as rB2

reaches the value of r* ≈ 15.645. Such a case marks transition between systems (with
rB2 < r*) whose CPC is smooth for all compositions wB2, and those (with rB2 > r*)
whose CPC, in a certain range of wB2, consists of three branches, and carries a three-
phase point and two cusps. The physical interpretation is here so simple since, at con-
stant rA and rB1, this is essentially a one-degree-of-freedom problem where only rB2 is
allowed to vary.

It is obvious that the situation will be much more complex in polydisperse polymer
blends whose distributions can be varied in many different dimensions. Common to all
such cases, however, should be the fact that the triple CP arises, as before, by merging
of two HEDCPs; hence it requires that, in addition to the HEDCP condition (19a), also
the second total derivative of ϕB along the CPC be zero




lim
η→0

 
d2ϕB

dη2



 CPC

 = 0  (22a)

or, alternatively,





lim
η→0

 
d2F

__

dη2



 ϕB

 = lim
η→0

 



F
__

ηη + 2F
__

ηξ 
dξ
dη  + F

__
ξξ




dξ
dη





2

 + F
__

ξ
d2ξ
dη2




 = 0  . (22b)

Not surprisingly, the criteria (19b) and (22b) are formally identical to the corresponding
conditions for ternary systems, Eq. (18) and (22) of ref.12, only the cloud-point function
F employed here is different.

The additional condition (22b) for the triple critical point can be simplified by using
the HEDCP criterion, and recast again in terms of chain-length averages as a symmetric
compact relation

TCP ≡ rA,zrB,z+1(5rB,z+1 − 3rB,z+2) − rB,zrA,z+1(5rA,z+1 − 3rA,z+2) = 0  . (23a)
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For a polydisperse polymer solution (rA = 1) the criterion (23a), combined with the
condition S = 0 (cf. Eq. (20c)), correctly reduces to the previously reported, less attrac-
tive asymmetric version2,18

TCP ≡ 15rz
2 + 20rzρz + 6rz − rz+1rz+2 = 0  . (23b)

From Eq. (23a) it is apparent that of primary importance for the existence of a triple
CP in blends are the ratios of even higher chain-length averages, ζK,z+2 ≡ rK,z+2/rK,z+1.
For instance, the CPC will possess a triple CP independently of their averages rA,z and
rB,z if, for both polymers, these ratios assume the value of 5/3 (= ζA,z+2 = ζB,z+2), and if
ζA,z+1 = ζB,z+1 = 3 to satisfy the condition S = 0 for an HEDCP (cf. Eq. (20a)).

Interesting is the correlation between effects of the two ζK,z+2’s, clearly seen from the
rearranged form of Eq. (23a)

ζB,z+1

ζA,z+1
 
rB,z+1

rA,z+1
 
5 − 3ζB,z+2

5 − 3ζA,z+2
 = 1  . (23c)

A triple CP cannot appear if ζB,z+2 > 5/3 and ζA,z+2 < 5/3, or vice versa; in certain sense
one might say that it requires both polymers A and B to be “comparable” in their ratios
rz+2/rz+1 (either both should be <5/3, or both should be >5/3). This demand for “like-
ness” is also revealed by the behavior of systems which happen to possess a triple CP
already: In order to keep it during perturbation of the MMDs of A and B, an increase
in, say, ζA,z+2 ratio for A (at constant rz’s and rz+1’s) necessitates another increase in
ζB,z+2 for the other polymer B. Even stronger argument for the above claim is offered
by the ultimate case of “likeness” when both distributions of A and B are identical, i.e.,
wA(r) ≡ wB(r); then the condition TCP = 0 is satisfied automatically, and the existence
of a triple CP symmetrically located at ϕA,c = ϕB,c = 1/2 merely requires matching the
HEDCP criterion S = 0. Thus the joint effect of the two ζK,z+2’s on the triple CP crite-
rion turns out to be just the opposite from the synergetic action of the two ζK,z+1’s on
the HEDCP condition. This difference in behavior originates in the signs of the two
symmetrical terms in the respective criteria: they are the same in Eq. (20a), but they are
opposite in Eq. (23a).

If A is monodisperse, the triple CP criterion (23a), combined with the HEDCP con-
dition S = 0 (see Eq. (20a)), yields a simple explicit formula for the triple-CP ratio
ζB,z+2 as a function of only the chain-length ratio rB,z/rA

3ζB,z+2 = 5 − 
2

(2 + 3ρB,z/ρA)2  . (23d)
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Equation (23d) reveals that the effect of moving from a monomeric to polymeric sol-
vent A on the ratio ζB,z+2 required for a triple CP is very mild, albeit opposite to that
observed for HEDCP alone. The ratio stays practically constant at ζB,z+2 ≈ 5/3 as long
as B is much longer in chain length than A, rB,z >> rA. Letting the monodisperse solvent
A grow in molecular size makes the right-hand side of Eq. (23d) greater, thereby some-
what reducing the required magnitude of ζB,z+2. The effect, however, is very small:
When A and B become equal in size (rA = rB,z), the needed ζB,z+2 is still 1.64, and even
in the other limit for rA/rB,z → ∞, ζB,z+2 should equal 1.5.

The validity of Eq. (23d) is supported by two well known triple-CP ternary sys-
tems15,16: (i) For the one mentioned at the beginning of this section, with rA = 1, rB1 =
1, rB2 = 15.645 and wB2 ≈ 4.95 . 10–3, the ratio is ζB,z+2 ≈ 1.650, whether computed from
the mixture composition or from Eq. (23d). (ii) If the molecular weight of polymer B
becomes very high while that of A stays finite, i.e., with rA = 1 and rBi → ∞, the
required ratio of the two B fractions drops to rB2/rB1 = 9.899, and the B-composition of
the triple-CP system is wB2 ≈ 0.01010. Here again, both methods of calculation yield
the same ratio ζB,z+2 1.6667.

5. EXAMPLES

First, several computed phase diagrams will be shown that confirm various quantitative
criteria derived above. Then some model calculations of more general character will be
presented.

Figure 2 displays phase diagram for a symmetrical polymer blend with ζA,z+1 = ζB,z+1 = 3
that should possess a triple CP (cf. Eqs (20b) and (23c)); specifically, both polymers A
and B here consist of two components with rA1 = rB1 = 10, rA2 = rB2 = 150, and wA2 =

0.0               0.2              0.4                0.6               0.8              1.0ϕB
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FIG. 2
Phase diagram for a symmetrical quaternary blend with a triple CP, with parameters rA1 = rB1 = 10,
rA2 = rB2 = 150, wA2 = wB2 = 1.875623 . 10–2. Notation is the same as in Fig. 1
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wB2 =  w2,S
″  = 1.87562 . 10–2. Quite surprising is the deep valley on the bimodal CPC,

resembling diagrams with eutectic points, in stark contrast to typical polymer solution
CPCs that were flat in the vicinity of a triple CP (ref.18). Unlike in a real eutectic,
however, the two sloping portions of the CPC do not intersect yet. As before, the CPC at
ϕB = 1/2 is just on the verge from being smooth and round (for wA2 = wB2 > w2,S

″ , where
S > 0) to displaying an intersection of two CPC branches, with the familiar non-stable
“triangle” and two cusps below the stable CPC envelope (for wA2 = wB2 < w2,S

″ ,  where
S < 0). Examples for both cases are detailed in Figs 3a and 3b. At first sight it might be
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FIG. 3
Two magnified midsections of phase diagrams for systems derived from that of Fig. 2 by perturbing
the compositions of A and B. Notation is the same as in Fig. 1. a for wA2 = wB2 = 0.03, S > 0 and
the CPC becomes smooth; b for wA2 = wB2 = 0.01, S < 0 and a three-phase point and two cusps
appear on the CPC
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objected that no splitting of the triple CP into two HEDCPs is apparent here since in
symmetrical blends, the lone CP always stays in the middle at ϕB,c = 1/2. However if
the symmetry condition is rescinded, the transition from Fig. 2 to Fig. 3b can also be
made by many other pathways where the HEDCP will show up either on the left or on
the right cusp; hence, in that sense our original thesis is justified.

The above statement about the behavior of systems with wA2 = wB2 < w2,S
″  is correct

only up to a point. As explained at the beginning of Section 4, the function ζz+1(w2)
possesses a maximum beyond which it starts descending, capable of assuming the
above value of ζz+1 = 3 again. Indeed, such a second root of the equation S = 0 is found
at wA2 = wB2 = w2,S

′  ≈ 1.03233 . 10–3 where the CPC displays a triple CP again. Under-
standably, for wA2 = wB2 <w2,S

′  the CPC is again stable and smooth in all of its length.
Although the triple CP criterion TCP = 0 is trivially satisfied for any symmetrical

blend, a “stronger” zero results if for both polymers also ζz+2 = 5/3 (cf. Eq. (23a)). Keeping
rA1 and rB1 fixed at 10 and both ratios ζz+1 at 3, that happens for rA2 = rB2 ≈ 98.9899 at
wA2 = wB2 = w2,S ≈ 0.010101. These values are familiar: the same wB2 and the same
component ratio rB2/rB1 ≈ 9.89899 characterize the triple CP if A is a monomeric sol-
vent and rBi → ∞, as shown long ago by Tompa15. Furthermore, the genesis of the triple
CP is here the same as well: it arises as a double root of the condition S(w2) = 0, i.e.,
the criterial function S(w2) of Eq. (20a) here displays a minimum just touching on the
axis w2 at w2 = w2,S. A small perturbation of w2 in either direction from w2,S results in
the CPC becoming smooth and stable in its entire length. The phase diagram looks
similar to that of Fig. 2.

Example of an asymmetric blend with an HEDCP was shown in Fig. 1; it contains no
new features relative to the diagrams of polydisperse polymer solutions with an
HEDCP, except for the profound rift in the critical region. Perhaps worth noting are
dependences of number, weight, and z-averages of polymers A and B separated into the
incipient phase, plotted as functions of the principal phase concentration ϕB and dis-
played in Figs 4a and b. The results pointedly illustrate the strong, almost exclusive
preference of low-molecular weight component of one polymer to penetrate into the
phase rich in the other4,25. For instance in the case of blends poor in B (say, with ϕB < 0.4),
the B-rich incipient phase appearing at the cloud point contains practically only the
lower A-component but very little of the higher one, as indicated by all three plotted
averages, rA,n

∗ , rA,w
∗  and rA,z

∗  , being about 10 (see Fig. 4a). On the other hand, the rich-
in-A incipient phase separated from a rich-in-B blend contains predominantly the
higher A component, squeezed out of the B-rich environment. This is apparent, for
instance, from high values of rA,z

∗  shown for blends rich in B (say, with ϕB > 0.6),
compared to the original value in pure A, rA,z ≈ 69.15. The described behavior is even
more conspicious for polymer B with higher polydispersity (see Fig. 4b).

For an asymmetric blend with preselected chain lengths rA1 = rB1 = 10, rA2 = 150 and
rB2 = 300, the triple CP conditions TCP = 0 and S = 0 leave no more degrees of freedom
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in A and B compositions (although there may be more than one solution). A triple CP
is found for wA2 ≈ 0.4969377 and wB2 ≈ 1.672973 . 10–3, with coordinates ϕB ≈ 0.757374
and g ≈ 8.88615 . 10–2. The phase diagram for this case is shown in Fig. 5. Its CPC is
still smooth, displaying a strong depression. Again, appropriate perturbations in compo-
sition would create systems with a three-phase region. For instance, for wA2 = 0.25 and
wB2 ≈ 2.97644 . 10–3 an HEDCP is positioned on the right cusp, whereas for wA2 = 0.25 and
wB2 ≈ 8.8707 . 10–4 an HEDCP occupies the left cusp.
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FIG. 4
Average chain lengths of the polymer contained in the incipient phase appearing at the cloud point of
solutions of composition ϕB for the system of Fig. 1: 1 number average, 2 weight average, 3 z-aver-
age. a Polymer A, b polymer B
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Finally, we would like to check the condition derived for the critical slope of the
shadow curve, Eq. (18i). An illustrative way of doing that is to compute the phase
diagram for a system compatible with Eq. (18j), derived from Eq. (18i) for the case of
vertical shadow curve. For this demonstration, the chain lengths of the four components

0.0               0.2              0.4               0.6               0.8               1.0ϕB

–0.091

–0.111

–0.131

1

3

2–g

CP

FIG. 6
Phase diagram for an asymmetric blend of the same chain-length characteristics as employed in Fig. 1,
with its composition chosen so as to make its shadow curve vertical at the critical point. The consti-
tuents’ compositions wA2 = 0.02 and wB2 ≈ 3.10185 . 10–2 satisfy Eq. (18j)

0.0               0.2               0.4               0.6               0.8               1.0ϕB
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–0.08

–0.10

–0.12

1

3

2–g

CP

FIG. 5
Phase diagram for an asymmetric blend with components’ chain lengths identical to those of Fig. 1,
and the compositions wA2 ≈ 0.496938 and wB2 ≈ 1.67297 . 10–3 that characterize a blend with a triple
critical point
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are left unchanged, i.e., rA1 = rB1 = 10, rA2 = 150 and rB2 = 300. For the chosen compo-
sition of A, wA2 = 0.02, the composition of B has to be taken as wB2 ≈ 3.10185 . 10–2 to
satisfy Eq. (18j); the CP is then at ϕB ≈ 0.559466 and g ≈ 0.135720, with a positive
stability parameter S ≈ 1 128.5 (cf. Eq. (20a)). The numerically computed diagram for
this case in Fig. 6 indeed shows a shadow curve that becomes vertical in the neighbor-
hood of the critical point; it also displays a three-phase region.

In another set of calculations on four-component blends, we examine the effect of
varying the chain-length ratios ζw ≡ rw/rn and ζz ≡ rz/rw at constant weight-average rw.

Figure 7 shows a symmetrical quasi-binary (QB) phase diagram calculated for rK,w = 1 000,
where K = A, B. Curve 1, added for comparison, refers to a strictly binary blend with
rA = rB = 1 000, whereas the curves 2 and 3 have common ζK,w = 2 but differ in their
ζK,z (which is 1.5 for 2 and 2.5 for 3). The CPCs all become very soon (say for g > 0.005)
indistinguishable from pure-A and -B axes, for polydisperse blends even more so than
for the binary mixture. This behavior has often been incorrectly interpreted as a proof
of almost perfect immiscibility for most of the polymers. In fact it merely means that,
when increasing the g parameter, the incipient phase separation starts very early, even
for an almost pure polymer containing only traces of the other polymer. Moreover, note

0                            0.5                       1.0

–0.002

–0.004

–0.006

–0.008

1

2

–g

2
3

1
2

3

2
3

3

ϕB

FIG. 7
Quasi-binary (QB) phase diagram calculated
for symmetrical blends, rA,w = rB,w = 1 000:
CPC (heavy solid line), shadow curve (dot and
dash line), spinodal (light solid line), horizontal
tie-lines (dashed lines); 1 single-component
polymers A and B, 2 and 3 ζA,w = ζB,w = 2;
2 ζA,z = ζB,z = 1.5; 3 ζA,z = ζB,z = 2.5

0                              0.5                           1.0

–0.0020

–0.0022

–0.0024

–g

ϕB

FIG. 8
The same as Fig. 7 except for ζA,z = ζB,z = 4.0
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that the CPC is useless as a measure of mutual solubility unless the system is strictly
binary. In practice one has a multicomponent blend in which the shadow curve may
deviate markedly from the CPC, indicating sizeable mutual solubility in the incipient
phase up to high values of g. In fact, shadow curves do not merge into the axes repre-
senting pure constituents until the system is cooled down close to 0 K (g → ∞). Strictly
speaking, the same is true for CPC’s but for all practical purposes, these curves are
indistinguishable from the axis already at g values not far above the critical value.

The cusp seemingly formed by the shadow curve 3 at the CP is not real, and the
distortion can be easily understood: In strictly binary blends, in which A and B are both
monodisperse, the CPC and shadow curve coincide in a single coexistence curve (binodal)
contained in the g(ϕB) plane. With growing polydispersity index ζw the shadow curve,
anchored at all times in the plane by the CP, starts pivoting around its anchor and
moving more and more out of the CPC plane, until it runs “perpendicularly” to it; then
the shadow curve projects onto the CPC plane as a vertical cusp touching on the CP. It

0                            0.5                       1.0

–0.001

–0.002

–0.003

–g

ϕB = 0.1           ϕB = 0.5

ϕB

FIG. 9
QB phase diagram for an asymmetric blend,
rA,w = 1 000, rB,w = 5 000, ζA,w = ζB,w = 2, ζA,z

= ζB,z = 2. Line notation the same as in Fig. 7,
with additional coexistence curves (− − −)
shown for ϕB 0.1 and 0.5. Horizontal arrows
indicate thermodynamic aging at ϕB = 0.5 and
g ≈ 2.375 . 10–3

0                           0.5                        1.0

–0.02

–0.04

–0.06

–0.08

–g

ϕB

ϕB = 0.15    ϕB = 0.4

FIG. 10
QB phase diagram for a blend symmetrical in
rw (= 100). Polymer A: monodisperse; polymer
B: ζB,w = 2, ζB,z = 1.5. Symbols the same as in
Fig. 9
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can be shown that for symmetrical blends, like those of Fig. 7, this occurs when their rz

reaches the value rz
#, where

rz
# = (4rw + rz+1)/3  . (24)

It so happens that the curve 3 in Fig. 7 almost matches this condition; its rz deviates
from rz

# of Eq. (24) by a mere ≈ 1.3%. When rz grows further above rz
#, the shadow

curve in the multidimensional composition space continues pivoting around the CP, and
an apparent loop with a point of self-intersection arises on its projected g(ϕB

∗ ) image
(see Fig. 8). As follows from the above, in symmetrical blends such a point can appear
only if rz > rz

#, and it can be pinpointed as an equilibrium where the computed noncriti-
cal incipient phase concentration ϕB

∗  equals 1/2.
Although the location of the shadow curves already suggests sizeable mutual solu-

bility, we need coexistence curves to judge whether fully phase-separated blends
should be expected to exhibit a similar phenomenon. Figure 9 represents a non-symme-
tric blend and shows coexistence curves in addition to cloud point and shadow curves.
For instance, a 50/50 blend (ϕB = 0.5), if completely phase separated, would follow its
dashed curves and would, in equilibrium, not be immiscible unless g becomes very high
(and T very low). The phase concentrated in polymer B contains sizeable amounts of
the low-molar mass components in polymer A. The reverse is true for the other phase.
There is no true immiscibility though a measurement of the CPC would suggest such
behavior at g > 0.0025. Analogous behavior must be expected with blends symmetrical
in rw. 

These findings indicate that the concept of almost absolute immiscibility in some
polydisperse polymer blends has to be questioned. Blending produces a more or less

–0.01

–0.015

–0.02

–g

0                               0.5                               1ϕB

FIG. 11
QB phase diagram for two asymmetric blends,
rA,w = 100, rB,w = 500, ζA,w = 2, ζB,w = 3, ζA,z =
1.75, ζB,z = 2. Line types the same as in Fig. 7:
polymers A and B are binary mixtures (light
lines), polymers A and B with continuous molar-
mass distributions (heavy lines)
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finely dispersed two-phase system in which the two phases will initially consist of
almost pure polymers A and B. However slowly, the system is forced toward mutual
solubility to some degree. This process of thermodynamic aging cannot be stopped
unless special measures are taken. If one or both phases vitrify upon cooling the aging
process will be stopped, to be revived again when reprocessing the blend. An effective
means of stopping thermodynamic aging is provided by cross-linking of one or both
phases.

Calculation of the quasi-binary phase diagram for a blend consisting of a monodis-
perse component A and a polydisperse polymer B corroborates the remarks on fraction-
ation made above. Figure 10 demonstrates that in such cases thermodynamic aging
must be expected to occur predominantly on the left, A-rich, side of the diagram.

Finally, Fig. 11 exemplifies that the type of molar-mass distribution, at identical rw,
ζw and ζz, influences the phase diagram markedly. We compare blends consisting of
two binary polymers (light curves) and of two polymers with continuous distributions
of Schulz–Zimm type (heavy curves). This result is consistent with similar conclusions
on polymer solutions, reported previously26.

APPENDIX 1

Total derivatives along the CPC can be evaluated from the differentials of cloud-point
functions. Particularly advantageous are the functions F and B (as opposed to G) since
they contain no interaction parameter g, hence they do not depend explicitly on tem-
perature. Choosing ξ, η and ϕB as independent variables, the total differentials are

dF
__

 = F
__

ξdξ + F
__

ηdη + F
__

ϕdϕB = 0  , (A1.1)

dB
__

 = B
__

ξdξ + B
__

ηdη + B
__

ϕdϕB = 0  . (A1.2)

With no loss of generality, dϕB can be eliminated by combining Eqs (A1.1) and
(A1.2). For instance, from Eq. (A1.1) one has

dϕB

dη  = −


F
__

ξ
dξ
dη  + F

__
η



/F
__

ϕ (A1.3)

which, substituted into Eq. (A1.2), leads to the derivative

dξ
dη  = 

B
__

ηF
__

ϕ − B
__

ϕF
__

η

B
__

ϕF
__

ξ − B
__

ξF
__

ϕ
  . (A1.4)
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Equation (A1.3) confirms that the HEDCP conditions (19a) and (19b) are indeed con-
sistent.

The slope of the CPC is derived from the function G for which, analogously to Eqs (A1.1)
and (A1.2), one can write

dG
__

dϕB
 = G

__
g 

dg
dϕB

 + G
__

ϕ + G
__

η 
dη
dϕB

 + G
__

ξ 
dξ

dϕB
 = 0  . (A1.5)

With dξ/dϕB expressed from Eq. (A1.1)

dξ
dϕB

 = − 
F
__

ϕ + F
__

η(dη/dϕB)
F
__

ξ
(A1.6)

and dη/dϕB available from Eq. (A1.3), the relation for the CPC slope, dg/dϕB, can be
obtained from Eq. (A1.5).

Equations (A1.1)–(A1.6) are entirely general, and have to be satisfied at any point of
the CPC. Their specific forms for critical state are obtained by employing the expanded
forms (13)–(15) for F, G, and B, and taking the limit for η → 0. Equation (A1.4),
combined with Eq. (19b), then yields the practical form of the HEDCP criterion, Eq.
(20a); in addition, its total derivative relative to η yields the second derivative d2ξ/dη2

required in Eq. (22b) to provide the practical form (23a) of the triple CP criterion. Also,
the derivation of the expression (18e) for the critical CPC slope, (dg/dϕB)c, from the
limiting forms of Eqs (A1.3), (A1.5) and (A1.6) should be trivial.

The presence of the terms dη/dϕB and dξ/dϕB in Eq. (A1.5) might raise concern about
the soundness of these formulas around HEDCPs where these derivatives diverge. For-
tunately, it turns out that with dξ/dϕB of Eq. (A1.6) substituted into Eq. (A1.5), the
combined coefficient of the ill-behaved term dη/dϕB becomes zero and in effect
removes the divergence, yielding the result (18e) for the critical CPC slope, applicable
even at an HEDCP.

APPENDIX 2

At a cusp of the CPC, dϕB/dη of Eq. (A1.3) has to be zero. After substituting dξ/dη
from Eq. (A1.4) into Eq. (A1.3), its right-hand side can be simplified and the above
cusp criterion written as

B
__

ηF
__

ξ − B
__

ξF
__

η = 0  . (A2.1)
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After substituting the derivatives from Eqs (5) and (8a), and employing Eq. (6a) to
introduce the interaction parameter g, the condition (A2.1) takes the form

2g − (ϕA
∗ rA,w

∗ )−1 − (ϕB
∗ rB,w

∗ )−1 = 0 (A2.2)

which is recognized as the equation of the spinodal1 written for the conjugate phase.
Hence, the incipient phase coexisting with a CPC’s cusp point belongs to the spinodal
hypersurface.
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